Valentin Filatov, Elena Voloshchuk, Nikita Spivak


This article was reviewed by the classical approach to the construction of relational relations, developed the relational model presentation and storage of fuzzy data, as well as the model of integration and fuzzy relations in relational database.

For storage of data has been identified fuzzy specialized type of relationship. Driving this relationship satisfies the two conditions: corresponds to the requirements of the classical relational data model, and efficiently stores and presents a model of linguistic variable.

Thus, the proposed terms of the expansion of basic operations of relational algebra class systems designed on the basis of fuzzy logic. Using the results obtained, it is possible to effectively use the advantages of database management systems on the basis of classical relational model for intelligent systems with elements of fuzzy logic. The use of this approach was the basis for the basic quantitative criteria for assessing the quality of higher education in the Kharkiv National University of Radio Electronics. The approach can be used as a component of self-assessment practices of higher education institutions for the comprehensive monitoring of the quality of higher education in the development of the concept of monitoring in Ukraine evaluation of higher education.


databases; extensions of relational algebra operations; fuzzification on databases

Full Text:

PDF>PDF (Russian)


Касаткина, Н.В., Танянский, С.С., Филатов, В.А. (2009). Методы хранения и обработки нечетких данных в среде реляционных систем. Автоматика. Автоматизація. Електротехнічні комплекси та системи, вип. 2(24), С. 80-86.

Мейер, Д. (1987). Теория реляционных баз данных: пер. с англ. – М.: Мир, 608 с.

Филатов, В.А., Касаткина, Н.В. (2009). Об одном подходе к интеллектуальному анализу реляционных данных. Вестник Херсонского национального технического университета, вип. 1 (34), С. 157–161.

Обеспечение качества высшего образования в рамках Болонского процесса /Уровни обеспечения качества высшего образования в рамках Болонской Декларации/. – [Электронный ресурс]. – Режим доступа:

Bodyanskiy, Ye., Dolotov, A., Pliss, I. (2009). Self-learning fuzzy-spiking neural network as a nonlinear pulse-position threshold detection dynamic system based on second order critically damped response units. Int. Book Series “Information Science & Computing”. Sofia: Institute of Information Theories and Applications FOI ITHEA, 9, 63–70.

Bodyanskiy, Ye., Otto, P., Popov, S., Rybalchenko, T. (2009). Neuro-Fuzzy Elman Network for Short-Term Electric Load Forecasting. Proc. 54th International Scientific Colloquium. Technical University of Ilmenau, Flash Drive, 6 p.

Bodyanskiy, Ye., Popov, S., Titov, M. (2010). Robust Learning Algorithm for Networks of Neuro-Fuzzy Units. Innovations and Advances in Computer Sciences and Engineering / Ed. by T. Sobh. – Dordrecht : Springer, 343–346.

Bodyanskiy, Ye., Teslenko, N., Grimm, P. (2010). Hybrid evolving neural network using kernel activation functions. Proc. 17th Zittau East-West Fuzzy Colloquium. – Zittau/Goerlitz : HS, 39–46.

Dolotov, A., Bodyanskiy, Ye. (2009). Analog-digital self-learning fuzzy spiking neural network in image processing problems. Image Processing / Vukovar : In-teh, 357–380. (Book chapter).

European University Association. – [Электронный ресурс]. – Режим доступа: http://

Kokshenev, I., Bodyanskiy, Ye., Gorshkov, Ye., Kolodyazhniy, V. (2006). Outlier resistant recursive fuzzy clustering algorithm. Computational Intelligence: Theory and Applications. Advances in Soft Computing, 38, 647–652.


  • There are currently no refbacks.

Copyright (c) 2016 Валентин Александрович Филатов, Елена Борисовна Волощук, Никита Олегович Спивак

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (Print) : 2449-7320

ISSN (Online) : 2449-8726